Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 8
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Global sea-level budget 1993-present ArchiMer
Cazenave, Anny; Meyssignac, Benoit; Ablain, Michael; Balmaseda, Magdalena; Bamber, Jonathan; Barletta, Valentina; Beckley, Brian; Benveniste, Jerome; Berthier, Etienne; Blazquez, Alejandro; Boyer, Tim; Caceres, Denise; Chambers, Don; Champollion, Nicolas; Chao, Ben; Chen, Jianli; Cheng, Lijing; Church, John A.; Chuter, Stephen; Cogley, J. Graham; Dangendorf, Soenke; Desbruyeres, Damien; Doell, Petra; Domingues, Catia; Falk, Ulrike; Famiglietti, James; Fenoglio-marc, Luciana; Forsberg, Rene; Galassi, Gaia; Gardner, Alex; Groh, Andreas; Hamlington, Benjamin; Hogg, Anna; Horwath, Martin; Humphrey, Vincent; Husson, Laurent; Ishii, Masayoshi; Jaeggi, Adrian; Jevrejeva, Svetlana; Johnson, Gregory; Kolodziejczyk, Nicolas; Kusche, Juergen; Lambeck, Kurt; Landerer, Felix; Leclercq, Paul; Legresy, Benoit; Leuliette, Eric; Llovel, William; Longuevergne, Laurent; Loomis, Bryant D.; Luthcke, Scott B.; Marcos, Marta; Marzeion, Ben; Merchant, Chris; Merrifield, Mark; Milne, Glenn; Mitchum, Gary; Mohajerani, Yara; Monier, Maeva; Monselesan, Didier; Nerem, Steve; Palanisamy, Hindumathi; Paul, Frank; Perez, Begona; Piecuch, Christopher G.; Ponte, Rui M.; Purkey, Sarah G.; Reager, John T.; Rietbroek, Roelof; Rignot, Eric; Riva, Riccardo; Roemmich, Dean H.; Sorensen, Louise Sandberg; Sasgen, Ingo; Schrama, E. J. O.; Seneviratne, Sonia I.; Shum, C. K.; Spada, Giorgio; Stammer, Detlef; Van De Wal, Roderic; Velicogna, Isabella; Von Schuckmann, Karina; Wada, Yoshihide; Wang, Yiguo; Watson, Christopher; Wiese, David; Wijffels, Susan; Westaway, Richard; Woppelmann, Guy; Wouters, Bert.
Global mean sea level is an integral of changes occurring in the climate system in response to unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows changes (e.g.,acceleration) to be detected in one or more components. Study of the sea-level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled "Regional Sea Level and Coastal Impacts", an international effort involving the sea-level community worldwide has been recently initiated with the objective of assessing the various datasets used to estimate components of the sea-level...
Tipo: Text
Ano: 2018 URL: https://archimer.ifremer.fr/doc/00454/56564/58270.pdf
Imagem não selecionada

Imprime registro no formato completo
Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance ArchiMer
Meyssignac, Benoit; Boyer, Tim; Zhao, Zhongxiang; Hakuba, Maria Z.; Landerer, Felix W.; Stammer, Detlef; Koehl, Armin; Kato, Seiji; L'Ecuyer, Tristan; Ablain, Michael; Abraham, John Patrick; Blazquez, Alejandro; Cazenave, Anny; Church, John A.; Cowley, Rebecca; Cheng, Lijing; Domingues, Catia M.; Giglio, Donata; Gouretski, Viktor; Ishii, Masayoshi; Johnson, Gregory C.; Killick, Rachel E.; Legler, David; Llovel, William; Lyman, John; Palmer, Matthew Dudley; Piotrowicz, Steve; Purkey, Sarah G.; Roemmich, Dean; Roca, Rmy; Savita, Abhishek; Von Schuckmann, Karina; Speich, Sabrina; Stephens, Graeme; Wang, Gongjie; Wijffels, Susan Elisabeth; Zilberman, Nathalie.
The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4-1 Wm(-2)). This imbalance is coined Earth's Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This...
Tipo: Text Palavras-chave: Ocean heat content; Sea level; Ocean mass; Ocean surface fluxes; ARGO; Altimetry; GRACE; Earth Energy Imbalance.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00675/78723/80997.pdf
Imagem não selecionada

Imprime registro no formato completo
Ocean Climate Observing Requirements in Support of Climate Research and Climate Information ArchiMer
Stammer, Detlef; Bracco, Annalisa; Achutarao, Krishna; Beal, Lisa; Bindoff, Nathaniel L.; Braconnot, Pascale; Cai, Wenju; Chen, Dake; Collins, Matthew; Danabasoglu, Gokhan; Dewitte, Boris; Farneti, Riccardo; Fox-kemper, Baylor; Fyfe, John; Griffies, Stephen M.; Jayne, Steven R.; Lazar, Alban; Lengaigne, Matthieu; Lin, Xiaopei; Marsland, Simon; Minobe, Shoshiro; Monteiro, Pedro M. S.; Robinson, Walter; Roxy, Mathew Koll; Rykaczewski, Ryan R.; Speich, Sabrina; Smith, Inga J.; Solomon, Amy; Storto, Andrea; Takahashi, Ken; Toniazzo, Thomas; Vialard, Jerome.
Natural variability and change of the Earth's climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are...
Tipo: Text Palavras-chave: Ocean observing system; Ocean climate; Earth observations; In situ measurements; Satellite observations; Ocean modeling; Climate information.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00675/78724/80996.pdf
Imagem não selecionada

Imprime registro no formato completo
Satellite Altimetry and Key Observations: What We've Learned, and What's Possible with New Technologies ArchiMer
Scott, Robert B.; Bourassa, Mark; Chelton, Dudley; Cipollini, Paolo; Ferrari, Raffaele; Fu, Lee-lueng; Galperin, Boris; Gille, Sarah; Huang, Huei-ping; Klein, Patrice; Maximenko, Nikolai; Morrow, Rosemary; Qiu, Bo; Rodriguez, Ernesto; Stammer, Detlef; Tailleux, Remi; Wunsch, Carl.
The advent of high accuracy satellite altimetry in the 1990's brought the first global view of ocean dynamics, which together with a global network of supporting observations brought a revolution in understanding of how the ocean works [1]. At present a constellation of flying satellite missions routinely provides sea level anomaly, sea winds, sea surface temperature (SST), ocean colour, etc. with mesoscale resolution (50km to 100km, 20 to 150 days) on a near global scale. Concurrently, in situ monitoring is carried out by surface drifters, Argo floats, moorings, sea gliders as well as ship-borne CTD (Conductivity-Temperature-Depth) and XBT (Expendable Bathythermograph) (to measure profiles of temperature and salinity), and ADCP (Acoustic Doppler Current...
Tipo: Text
Ano: 2010 URL: http://archimer.ifremer.fr/doc/00067/17791/15315.pdf
Imagem não selecionada

Imprime registro no formato completo
Satellite Salinity Observing System: Recent Discoveries and the Way Forward ArchiMer
Vinogradova, Nadya; Lee, Tong; Boutin, Jacqueline; Drushka, Kyla; Fournier, Severine; Sabia, Roberto; Stammer, Detlef; Bayler, Eric; Reul, Nicolas; Gordon, Arnold; Melnichenko, Oleg; Li, Laifang; Hackert, Eric; Martin, Matthew; Kolodziejczyk, Nicolas; Hasson, Audrey; Brown, Shannon; Misra, Sidharth; Lindstrom, Eric.
Advances in L-band microwave satellite radiometry in the past decade, pioneered by ESA’s SMOS and NASA’s Aquarius and SMAP missions, have demonstrated an unprecedented capability to observe global sea surface salinity (SSS) from space. Measurements from these missions are the only means to probe the very-near surface salinity (top cm), providing a unique monitoring capability for the interfacial exchanges of water between the atmosphere and the upper-ocean, and delivering a wealth of information on various salinity processes in the ocean, linkages with the climate and water cycle, including land-sea connections, and providing constraints for ocean prediction models. The satellite SSS data are complimentary to the existing in situ systems such as Argo that...
Tipo: Text Palavras-chave: Salinity; Remote sensing; Earth's observing systems; Future satellite missions; SMAP; SMOS; Aquarius.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00498/60985/64391.pdf
Imagem não selecionada

Imprime registro no formato completo
SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves ArchiMer
Ardhuin, Fabrice; Brandt, Peter; Gaultier, Lucile; Donlon, Craig; Battaglia, Alessandro; Boy, François; Casal, Tania; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean Marc; De Witte, Erik; Dibarboure, Gerald; Engen, Geir; Johnsen, Harald; Lique, Camille; Lopez-dekker, Paco; Maes, Christophe; Martin, Adrien; Marié, Louis; Menemenlis, Dimitris; Nouguier, Frederic; Peureux, Charles; Rampal, Pierre; Ressler, Gerhard; Rio, Marie-helene; Rommen, Bjorn; Shutler, Jamie D.; Suess, Martin; Tsamados, Michel; Ubelmann, Clement; Van Sebille, Erik; Van Den Oever, Martin; Stammer, Detlef.
The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the poorly known patterns of divergence and their impact on the ocean heat budget, and monitoring of the emerging Arctic up to 82.5°N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a...
Tipo: Text Palavras-chave: Ocean current; Tropics; Arctic; Doppler; Altimetry; Sea state; Remote sensing; Ocean waves.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00498/60964/64372.pdf
Imagem não selecionada

Imprime registro no formato completo
The roadmap for a GMES operational oceanography mission ArchiMer
Drinkwater, Mark; Rebhan, Helge; Le Traon, Pierre-yves; Phalippou, Laurent; Cotton, David; Johannessen, Johnny; Ruffini, Giulio; Bahurel, Pierre; Bell, Mike; Chapron, Bertrand; Pinardi, Nadia; Robinson, Ian; Santoleri, Lia; Stammer, Detlef.
Oceans cover approximately 70% of the Earth's surface and, with about 60% of the World's population living within 200 km of the coast, they have an untold impact on all of us. Not surprisingly, for people living close to the coast or those who depend on the ocean for their livelihood, regular forecasts of ocean conditions are just as important as traditional weather forecasts. Therefore, development of the infrastructure needed to support and sustain independent, European operational ocean forecasting, and the associated coastal and marine information services, are key priorities of the joint Global Monitoring for Environment and Security (GMES) initiative by the European Commission and ESA.
Tipo: Text Palavras-chave: Meteorology; Infrastructure; Maturation; World's oceans.
Ano: 2005 URL: http://archimer.ifremer.fr/doc/2005/publication-903.pdf
Imagem não selecionada

Imprime registro no formato completo
Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level ArchiMer
Ponte, Rui M.; Carson, Mark; Cirano, Mauro; Domingues, Catia M.; Jevrejeva, Svetlana; Marcos, Marta; Mitchum, Gary; Van De Wal, R. S. W.; Woodworth, Philip L.; Ablain, Michaël; Ardhuin, Fabrice; Ballu, Valérie; Becker, Mélanie; Benveniste, Jérôme; Birol, Florence; Bradshaw, Elizabeth; Cazenave, Anny; De Mey-frémaux, P.; Durand, Fabien; Ezer, Tal; Fu, Lee-lueng; Fukumori, Ichiro; Gordon, Kathy; Gravelle, Médéric; Griffies, Stephen M.; Han, Weiqing; Hibbert, Angela; Hughes, Chris W.; Idier, Déborah; Kourafalou, Villy H.; Little, Christopher M.; Matthews, Andrew; Melet, Angélique; Merrifield, Mark; Meyssignac, Benoit; Minobe, Shoshiro; Penduff, Thierry; Picot, Nicolas; Piecuch, Christopher; Ray, Richard D.; Rickards, Lesley; Santamaría-gómez, Alvaro; Stammer, Detlef; Staneva, Joanna; Testut, Laurent; Thompson, Keith; Thompson, Philip; Vignudelli, Stefano; Williams, Joanne; Williams, Simon D. P.; Wöppelmann, Guy; Zanna, Laure; Zhang, Xuebin.
A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We...
Tipo: Text Palavras-chave: Coastal sea level; Sea-level trends; Coastal ocean modeling; Coastal impacts; Coastal adaptation; Observational gaps; Integrated observing system.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00508/61958/66049.pdf
Registros recuperados: 8
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional